ERASPRAY ES81A HB PART B #### **Era Polymers Pty Ltd** Version No: 2.2 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **07/08/2017** Print Date: **09/08/2019** S.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name ERASPRAY ES81A HB PART B | | |---------------------------------------|---| | Synonyms | Not Available | | Proper shipping name | ETHYL METHYL KETONE (METHYL ETHYL KETONE) | | Other means of identification | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Polyurethane curative #### Details of the supplier of the safety data sheet | Registered company name | ny name Era Polymers Pty Ltd | | |-------------------------|--|--| | Address | 2-4 Green Street, BANKSMEADOW NSW 2019 Australia | | | Telephone | +61 (0)2 9666 3788 | | | Fax | +61 (0)2 9666 4805 | | | Website | www.erapol.com.au | | | Email | erapol@erapol.com.au | | ### Emergency telephone number | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|------------------------------| | Emergency telephone numbers | +61 1800 951 288 | | Other emergency telephone numbers | +61 2 9186 1132 | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Poisons Schedule Not Applicable | | |--------------------|---|--| | Classification [1] | Flammable Liquid Category 2, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects) | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) SIGNAL WORD DANGER #### Hazard statement(s) | H225 Highly flammable liquid and vapour. | | |--|--| | H319 | Causes serious eye irritation. | | H336 May cause drowsiness or dizziness. | | | AUH066 | Repeated exposure may cause skin dryness and cracking. | Version No: **2.2** Page **2** of **11** Issue Date: **07/08/2017** #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 # Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read label before use. | # Precautionary statement(s) Prevention | P210 Keep away from heat/sparks/open flames/hot surfaces No smoking. | | | |--|---|--| | P271 | P271 Use only outdoors or in a well-ventilated area. | | | P240 | Ground/bond container and receiving equipment. | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | P242 | Use only non-sparking tools. | | | P243 | Take precautionary measures against static discharge. | | | P261 | Avoid breathing mist/vapours/spray. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | #### Precautionary statement(s) Response | P370+P378 | P370+P378 In case of fire: Use water spray/fog for extinction. | | |---|---|--| | P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P312 | P312 Call a POISON CENTER or doctor/physician if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P303+P361+P353 | P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | #### Precautionary statement(s) Disposal | P501 | Dispose of contents/container in accordance with local regulations. | |------|---| | | | # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--------------------------------------| | 78-93-3 | 30-60 | methyl ethyl ketone | | Not Available | to 100 | All other substances - non-hazardous | # **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | If this product comes in contact with the eyes: ► Wash out immediately with fresh running water. ► Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upport of the eyelids and attention. ► Seek medical attention without delay; if pain persists or recurs seek medical attention. ► Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | |--|--|--| | Skin Contact | If skin or hair contact occurs: ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | | Inhalation | lation If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | | Ingestion Immediately give a glass of water. | | | # Indication of any immediate medical attention and special treatment needed | for simple ketones: | |---------------------| | | | BASIC TREATMENT | - ▶ Establish a patent airway with suction where necessary. - ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary. Version No: 2.2 Page 3 of 11 Issue Date: 07/08/2017 #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 - ▶ Administer oxygen by non-rebreather mask at 10 to 15 l/min. - Monitor and treat, where necessary, for pulmonary oedema - Monitor and treat, where necessary, for shock. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not droot - Give activated charcoal. #### ADVANCED TREATMENT - ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Consider intubation at first sign of upper airway obstruction resulting from oedema. - ▶ Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. #### EMERGENCY DEPARTMENT - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Consult a toxicologist as necessary BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - Foam - ▶ Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ## Advice for firefighters - ► Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - · Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - Fire Fighting - Fight fire from a safe distance, with adequate cover. If safe, switch off
electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools. - Do not approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire # Fire/Explosion Hazard - ▶ Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. HAZCHEM •2YE ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Minor Spills - Remove all ignition sources. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. Version No: 2.2 Page 4 of 11 Issue Date: 07/08/2017 #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 Contain and absorb small quantities with vermiculite or other absorbent material. Collect residues in a flammable waste container. ► Clear area of personnel and move upwind. ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. **Major Spills** Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. ► Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. • If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** Safe handling #### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers #### Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. - ▶ Check for bulging containers. - Vent periodically - Always release caps or seals slowly to ensure slow dissipation of vapours - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights, heat or ignition sources. - When handling, DO NOT eat, drink or smoke - Vapour may ignite on pumping or pouring due to static electricity. - DO NOT use plastic buckets - Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. # Other information - Store in original containers in approved flame-proof area. - ▶ No smoking, naked lights, heat or ignition sources - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. ▶ Keep containers securely sealed. - Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ► For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. # Storage incompatibility Suitable container #### Methyl ethyl ketone: - reacts violently with strong oxidisers, aldehydes, nitric acid, perchloric acid, potassium tert-butoxide, oleum - is incompatible with inorganic acids, aliphatic amines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic aid - forms unstable peroxides in storage, or on contact with propanol or hydrogen peroxide - attacks some plastics Version No: **2.2** Page **5** of **11** Issue Date: **07/08/2017** #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 - may generate electrostatic charges, due to low conductivity, on flow or agitation Ketones in this group: - are reactive with many acids and bases liberating heat and flammable gases (e.g., H2). - react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat. - are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides. - react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HClO4 (perchloric acid). - ▶ may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives. A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH). - Avoid strong bases - Avoid reaction with oxidising agents #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|---------------------------|---------------------|---------------------|---------------|---------------| | Australia Exposure Standards | methyl ethyl ketone | Methyl ethyl ketone (MEK) | 150 ppm / 445 mg/m3 | 890 mg/m3 / 300 ppm | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | | TEEL-2 | TEEL-3 | |--------------------------------------|--|---------------|---------------|---------------|---------------| | methyl ethyl ketone | Butanone, 2-; (Methyl ethyl ketone; MEK) | Not Available | | Not Available | Not Available | | Ingredient | Original IDLH | | Revised IDLH | | | | methyl ethyl ketone | 3,000 ppm | | Not Available | | | | All other substances - non-hazardous | Not Available | | Not Available | | | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying 'escape'
velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | # Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Version No: **2.2** Page **6** of **11** Issue Date: **07/08/2017** #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 #### Personal protection - Safety glasses with side shields. - ► Chemical goggles. #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use #### Hands/feet protection Contaminated gloves should be replaced. - As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### Body protection Other protection # See Other protection below #### Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Evewash unit. - ► Ensure there is ready access to a safety shower - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: 'Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: ERASPRAY ES81A HB PART B | Material | СРІ | |------------|-----| | BUTYL | Α | | PE/EVAL/PE | Α | | TEFLON | Α | # Respiratory protection - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Version No: 2.2 Page **7** of **11** Issue Date: 07/08/2017 #### **ERASPRAY ES81A HB PART B** В Selection of the Class and Type of respirator will depend upon the level of breathing zone Print Date: 09/08/2019 | | DUTTLINEOPRENE | Ь | contaminant and the chemical nature of the contaminant. Protection Factors (defined as the | | | | | |---|------------------|---|--|-------------------------------------|-------------------------|-------------------------|--| | | PVA | В | ratio of contaminant outside and inside the mask) may also be important. | | | | | | | HYPALON | С | | Maximum gas/vapour | | | | | | NATURAL RUBBER | С | Required
minimum
protection factor | concentration present in air p.p.m. | Half-face
Respirator | Full-Face
Respirator | | | | NATURAL+NEOPRENE | С | | (by volume) | • | • | | | ŀ | NEODDENIE | | up to 10 | 1000 | A-AUS / Class | - | | | ŀ | NEOPRENE | С | | | 1 | A ALIC / CI | | | | NEOPRENE/NATURAL | С | up to 50 | 1000 | - | A-AUS / Clas | | | | NITRILE | С | up to 50 | 5000 | Airline * | - | | | ľ | NITRILE+PVC | С | up to 100 | 5000 | - | A-2 | | | - | NITRILETFVC | C | up to 100 | 10000 | - | A-3 | | | | PVC | С | 100+ | | - | Airline** | | | | SARANEX-23 | С | * - Continuous Flow | | | | | | | VITON/NEOPRENE | С | ** - Continuous-flow or | positive pressure demand. | | | | ^{*} CPI - Chemwatch Performance Index BUTYL/NEOPRENE NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class
1 | - | | up to 50 | 1000 | - | A-AUS / Class
1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | $A(AII\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gases,\ B2 = Acid\ gas\ or\ hydrogen$ $\mbox{cyanide(HCN)}, \mbox{ B3 = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E c$ Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | DARK WINE-COLOURED LIQUID | | | | | |--|---------------------------|---|---------------|--|--| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | | Initial boiling point and boiling range (°C) | 79.6 | Molecular weight (g/mol) | Not Available | | | | Flash point (°C) | -5 | Taste | Not Available | | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | | | Upper Explosive Limit (%) | 10.1 | Surface Tension (dyn/cm or mN/m) | Not Available | | | | Lower Explosive Limit (%) | 0.8 | Volatile Component (%vol) | 70-80 | | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Version No: 2.2 Page 8 of 11 Issue Date: 07/08/2017 #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 | | Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose and throat. Acute exposure by inhalation also causes nervous system depression, headache, and nausea. High vapour levels are easily detected due to odour, however odour fatigue may occur, with loss of warning of exposure. | | | | | | |---|--|---------------------------|---|--|--|--| | Ingestion | The material has NOT been classified by EC Directives or other classification sy corroborating animal or human evidence. | ystems as 'harmfi | ul by ingestion'. This is because of the lack of | | | | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. In humans exposed to methyl ethyl ketone, skin inflammation has been reported. Animal testing has shown methyl ethyl ketone to have high acute toxicity from skin exposure. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | | | | Eye | This material can cause eye irritation and damage in some persons. | | | | | | | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Animal testing shows that methyl ethyl ketone may have slight effects on the nervous system, liver, kidney and respiratory system; there may also be developmental effects and an increase in birth defects. However, there is limited information available on the long-term effects of methyl ethyl ketone in humans, and no information is available on whether it causes developmental or reproductive toxicity or cancer. It is generally considered to have low toxicity, but it is often used in combination with other solvents, and the toxic effects of the mixture may be greater than with either solvent alone. Combinations of n-hexane or methyl n-butyl ketone with methyl ethyl ketone may increase the rate of peripheral neuropathy, a progressive disorder of the nerves of the extremities. Combinations with chloroform also show increase in toxicity. | | | | | | | | TOVICITY | DDITATION | | | | | | ERASPRAY ES81A HB PART B | | IRRITATION Not Available | | | | | | | | | | | | | | methyl
ethyl ketone | TOXICITY IRRITATION | | | | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* data extracted from RTECS - Register of Toxic Effect of chemical Substances | * Value obtained | from manufacturer's SDS. Unless otherwise specified | | | | | | | | | | | | | METHYL ETHYL KETONE | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | | | | | | | ERASPRAY ES81A HB PART B
& METHYL ETHYL KETONE | Methyl ethyl ketone is considered to have a low order of toxicity; however, methyl ethyl ketone is often used in combination with other solvents and the mixture may have greater toxicity than either solvent alone. Combinations of n-hexane with methyl ethyl ketone, and also methyl n-butyl ketone with methyl ethyl ketone may result in an increased in peripheral neuropathy, a progressive disorder of the nerves of the extremities. Combinations with chloroform also show an increase in toxicity. | | | | | | | Acute Toxicity | X | arcinogenicity | × | | | | | Skin Irritation/Corrosion | | eproductivity | × | | | | | Serious Eye Damage/Irritation | ✓ STOT - Sin | gle Exposure | ✓ | | | | | Respiratory or Skin sensitisation | X STOT - Repeated Exposure X | | | | | | Legend: X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification Aspiration Hazard # **SECTION 12 ECOLOGICAL INFORMATION** Mutagenicity # Toxicity | ERASPRAY ES81A HB PART B | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--------------------------|----------|--------------------|---------|-------|--------| | | | | | | | Version No: **2.2** Page **9** of **11** Issue Date: **07/08/2017** #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 | | Not Available | Not Available | | Not Available | Not Available | | Not Available | | |---------------------|---------------|--------------------|-------------------------------|---------------|---------------|-----------|---------------|--------| | methyl ethyl ketone | ENDPOINT | TEST DURATION (HR) | SPECI | ES | | VALUE | | SOURCE | | | LC50 | 96 | Fish | | 2-993mg/L | | 2 | | | | EC50 | 48 | Crusta | icea | | 5-91mg/L | | 2 | | | EC50 | 72 | Algae or other aquatic plants | | 1-972mg/L | | 2 | | | | EC0 | 96 | Fish | | | 1-848mg/L | | 2 | | | NOEC | 96 | Fish | | | 1-170mg/L | | 2 | | | | | | | | | | | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data For Methyl Ethyl Ketone: log Kow: 0.26-0.69; log Koc: 0.69; Koc: 34; Half-life (hr) air: 2.3; Half-life (hr) H2O surface water: 72-288; Henry's atm m3 /mol: 1.05E-05; BOD 5: 1.5-2.24, 46%; COD: 2.2-2.31, 100%; ThOD: 2.44; BCF: 1. Environmental Fate: Terrestrial Fate - Measured Koc values of 29 and 34 were obtained for methyl ethyl ketone in silt loams. Methyl ethyl ketone is expected to have very high mobility in soil. Volatilization of methyl ethyl ketone from milt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions. Aquatic Fate: Methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water and is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Bioconcentration is expected to be low in aquatic systems. Atmospheric Fate: Methyl ethyl ketone will exist solely as a vapour in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight. Ecotoxicity: Methyl ethyl ketone is not acutely toxic to fish, specifically, bluegill sunfish, guppy, goldfish, fathead minnow, mosquito fish, Daphnia magna water fleas and brine shrimp. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------|---------------------------|------------------------------| | methyl ethyl ketone | LOW (Half-life = 14 days) | LOW (Half-life = 26.75 days) | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------|---------------------| | methyl ethyl ketone | LOW (LogKOW = 0.29) | #### Mobility in soil | Ingredient | Mobility | |---------------------|----------------------| | methyl ethyl ketone | MEDIUM (KOC = 3.827) | # **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. # Product / Packaging disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** Version No: 2.2 Page 10 of 11 Issue Date: 07/08/2017 Print Date: 09/08/2019 # **ERASPRAY ES81A HB PART B** Labels Required # Land transport (ADG) | UN number | 1193 | | | |------------------------------|---|--|--| | UN proper shipping name | ETHYL METHYL KETONE (METHYL ETHYL KETONE) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions Not Applicable Limited quantity 1 L | | | # Air transport (ICAO-IATA / DGR) | UN number | 1193 | | | | |------------------------------|---|----------------|----------------|--| | UN proper shipping name | Ethyl methyl ketone; Methyl ethyl ketone | | | | | Transport hazard class(es) | ICAO/IATA Class | 3 | | | | | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 3L | | | | Packing group | II | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions | | Not Applicable | | | | Cargo Only Packing Instructions | | 364 | | | | Cargo Only Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Packing Instructions | | 353 | | | | Passenger and Cargo Maximum Qty / Pack | | 5L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y341 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 1 L | | # Sea transport (IMDG-Code / GGVSee) | UN number | 1193 | | | |------------------------------|---|--|--| | UN proper shipping name | ETHYL METHYL KETONE (METHYL ETHYL KETONE) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-E , S-D Special provisions Not Applicable Limited Quantities 1 L | | | Transport in bulk according
to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture METHYL ETHYL KETONE(78-93-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Version No: **2.2** Page **11** of **11** Issue Date: **07/08/2017** #### **ERASPRAY ES81A HB PART B** Print Date: 09/08/2019 Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards $\label{prop:equation} \mbox{Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals}$ Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations ### **National Inventory Status** | National Inventory | Status | |-------------------------------|---| | Australia - AICS | Yes | | Canada - DSL | Yes | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Thailand - TECI | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** | Revision Date | 07/08/2017 | |---------------|------------| | Initial Date | 07/08/2017 | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### Definitions and abbreviations PC-TWA: Permissible Concentration-Time Weighted Average ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term Exposure Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index